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Abstract-- The size effect method (SEM) of Bazant is reviewed and its range of applicability is
examined through comparisons with data from tests on notched and unnotched beams of normal
and high strength concrete. Its behavior and scope are discussed with respect to some other models,
including the multifractal scaling modeL The SEM reflects the effect of brittleness on the failure
adequately. Moreover, the model is able to satisfactorily predict the failure loads of fracture
specimens, as long as the initial cracks are not very small compared to the maximum aggregate size
and the specimen dimensions. For other cases, the predictions are over-conservative. ((I 1998 Elsevier
Science Ltd. All rights reserved.

INTRODUCTION

The size effect model (SEM) proposed by Bazant in 1984, and extended in later works, has
led to a framework for simulating the failure of concrete and other quasi-brittle materials,
as well as a simple experimental method for characterizing their fracture parameters. The
SEM is a nonlinear fracture mechanics model in the sense that it is based on two independent
material parameters derived from modifications of linear elastic fracture mechanics
(LEFM) , which is characterized by a single fracture parameter. The second parameter is
necessary to account for the effect of the fracture process zone of concrete, which is the
zone at the crack-tip where energy is dissipated during fracture. Furthermore, the model
utilizes an effective LEFM crack whose length is the sum of the traction-free crack and an
effective length of the fracture process zone (Bazant and Kazemi, 1990). Consequently, the
SEM is often classified as an effective crack model (Elices and Planas, 1993).

As its name suggests, the SEM is founded on the size-dependence of the failure loads.
This phenomenon can be introduced through the LEFM stress intensity factor, which is
proportional to the applied load. and is a function of the geometry and size of the specimen
or structure:

p ,---
.--;= viq( IX)
b-Jd .

(I)

where P = applied load, b = specimen thickness, d = the characteristic specimen dimen­
sion, IX = aid, a = crack or notch length and g(lX) is the geometry-dependent non-dimen­
sional energy release rate. In LEFM, crack propagation occurs when K1 = K Ic , where K Ic is
a material property known as the critical stress intensity factor or fracture toughness. As a
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consequence, there is a size effect, which can be demonstrated by considering geometricaIly­
similar notched specimens that fail without significant crack propagation, that is, at the
initial value of 'Y., say, 'l. = IXo. If the nominal stress at failure is defined as (J:-; = Pulbd, where
P

II
is the failure load. the LEFM size effect is obtained from eqn (I) as:

(2)

where the failure stress is inversely proportional to the square root of the specimen size (d).
for the constant K1c and g('Y.o), that is, for the same material and specimen geometry. At the
other extreme, failure that is insensitive to the stress intensity is governed by size-inde­
pendent stresses. as in plastic materials.

The present work reviews the SEM. and discusses the range of applicability of the
model in the characterization and prediction of size effects in fracture specimens. The
fracture parameters are determined using specimens cut from the halves of previously­
tested larger size specimens to avoid the need for three sets of moulds and to decrease the
quantity of material used. Two concretes with different strengths and brittleness have been
utilized in the experimental study. The comparison of the results with those of the mul­
tifractal scaling model is also presented.

REVIEW OF THE SIZE EFFECT MODEL

The size effect observed in different sizes of geometrically-similar concrete specimens
does not always follow the trend of LEFM discussed earlier. In most cases. the size effect
becomes weaker than that of LEFM, with a gradual decrease in the brittleness of the failure
mode. as the specimen size decreases. On the basis of such a transition exhibited in the
failure mode of notched concrete specimens, Bazant (1984) proposed the following relation
between the nominal failure stress ((JI') and the characteristic dimension (d) for geo­
metrically similar specimens. which is known as the size effect law or size effect model
(SEM) :

B d
(J" = {J

y/l+fJ dll
(3)

where Band dll are empirical parameters (that depend on the structural geometry and the
material characteristics). and fJ is called the brittleness number (Bazant and Pfeiffer, 1987).
Generally. higher values of B and do indicate higher strength and lower brittleness, respec­
tively. In some papers, B/~ is used instead of B, where/;, is a reference strength (for example.
tensile strength) that is introduced to make B non-dimensionaL However, Ihis has led some
researchers to incorrectly conclude that the application of the model needs the determination
of the tensile strength and that the parameters obtained depend on this value. It is, therefore.
suggested here that B be used instead, with units of stress, to avoid confusion. Similarly.
the parameter do is preferred to ;'0£1" that was used in early papers. which has led some to
assume (Carpinteri ('I al.. 1995), again incorrectly. that the trend given by SEM depends
only on the aggregate size (since d'i was defined as the maximum aggregate size and ;'0 was
the empirical parameter). The maximum nominal stress also needs some clarification. It
has often been defined as (IN = 1'nPlIihd. where P II is the peak load, b is the thickness. dis
the reference dimension (say, beam depth), and 1'n is a constant that is introduced for
convenience in order to obtain a meaningful quantity. for example. the maximum tensile
stress in a beam (Bazant and Kazemi. 1990). In the present work, en is omitted for simplicity.
Note that none of the above-mentioned simplifications modify either the significance or the
applicability of the model.

The asymptotes of eqn (3) are the Elilure criteria of size-independent strength (or limit
stress; i.e., (J>.J B for small d) and LEFM [i.e., (JNt:. d 1.1 for large d: as in eqn (2)].
Assuming that the former indicatcs ductile or plasticity-type failure and that the laller
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Fig. I. The size effect model shown in (a) logarithmic and (b) linear plots.

represents ideal-brittle failure. the SEM demonstrates the tendency of the failure mode of
geometrically similar structures to change gradually from ductile to brittle as their size
increases. This trend is usually shown in a log·-Iog plot, as in Fig. lao However, this diagram
presented over a scale range of I : 1000, has often been misunderstood (Tang et af., 1992;
Carpinteri et af., 1995) to imply that the strength approaches zero for real-size structures.
When the SEM is presented in a linear plot, over a more practical range of 0.2 < (J < 20.
as in Fig. I b, it is obvious that the trend is similar to those observed in experiments. The
failure stress reduces at a decreasing rate as the size increases but does not reach zero within
the normal ranges of structures utilized and tested. Note that in both plots the trends
corresponding to LEFM are obtained using eqn (2), with K" =. B{dog(:xo)} 1.2 (as defined by
Bazant and Kazemi, 1990).

The most important application of the SEM is in material characterization. The
transition in failure mode was used by Bazant to derive fracture parameters based on the
extrapolation of the data from laboratory specimens to the LEFM asymptote of the SEM.
As seen earlier, this limit, at which the parameters are defined. corresponds to very large
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specimen size (or theoretically, to infinite size where geometry and size effects are absent).
The parameters are (Bazant and Kazemi, 1990; Bazant et al., 1991):

'13K], ! ('I
I

E '.) 2n
(4)

where Kk = fracture toughness, G1 = fracture energy, E = modulus of elasticity, C1 = effec­
tive length of the fracture process zone, and b, = effective critical crack-tip opening dis­
placement. The constants g(:.:o) and g'(:xo) are the values of the non-dimensional energy
release rate and its derivative at the relative initial crack length:xo ( = initial crack or notch
length/beam depth). These LEFM functions, which depend on the specimen/structure
geometry, have been determined for some cases (Bazant and Kazemi, 1990' RILEM, 1990)
and can be obtained for others using elastic finite element analysis. A simple procedure for
the experimental determination of the fracture parameters (used later in this study), known
as the size effect method, has been specifIed in RILEM Draft Recommendation FMC2
(1990), using geometrically similar specimens of three different sizes. In order to avoid the
effects of data scatter. the minimum size range of 1 :4 and the use of three test specimens
in each size are recommended.

The implications of the material characterization in terms of the SEM are important
for purposes of materials engineering and structural design. In the fonner. Kk and ('I can
be utilized as measures of the resistance against cracking and the pseudo-ductility of the
material. respectively, in the process of developing better materials (cf Gettu and Shah,
1994). In structural design, the extension of the SEM to failures governed by concrete
cracking has been studied and seems promising (cf Bazant el al" 1994). The SEM has also
been used as the basis f()r the definition of the brittleness of structural failure. Considering
the brittleness num ber given in eqn en in terms of the parameters of eqn (4). we have

(5)

which can be explained as:

[structural brittleness at failure] = [material brittleness] >( [effect of structure geometry]

x [size]

demonstrating that in addition to the material brittleness, the geometry and size of a
structure influence its brittleness.

The SEM has been validated by Bazant et al. for several cases of failure, including
those of notched specimens and structural elements (cf Bazant and Kazemi, 1990; Bazant
el al., 1994). From a study of these and other works, it can be stated that eqn (3) is clearly
applicable to the cases of geometric similarity including the initial cracks or notches. In
other words, eqn (3) describes the size effect on the failure of structures ""hose dimensions
and initial crack lengths are scaled. On the other hand, the formulation of eqn (3) in terms
of the parameters defined in eqn (4) leads to a more general form (Bazant and Kazemi,
1990) :

(6)

that extends the SEM to non-similar structures. More importantly. this makes it possible
to predict the failure load of any specimen or structural geometry, not just specimens that
are geometrically similar to the ones used to calibrate the model. It should, however, be
noted that the SEM is directly applicable only to positive geometries (i.e., for g'(y'o) > 0),
wherc there is no propagation of the traction-free crack before failure. This aspect has been
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discussed by Planas and Elices (l990b) who have shown that in non-positive geometries,
the traction-free crack length at failure is not the same as the initial crack or notch length
(i.e., rx > rxo), and therefore, the failure load may be independent of the initial geometry, on
which the SEM is based.

COMPARISON WITH OTHER NONLINEAR FRACTURE MECHANICS MODELS

Planas and Elices have studied the theoretical and experimental aspects of various
nonlinear fracture models in detail, and explained their limitations and the equivalences
between them. Their studies have included the SEM, the Two Parameter Fracture Model
(TPFM) of Jenq and Shah (1985) and the Fictitious Crack Model of Hillerborg (1983).
They demonstrated that all these models converge to LEFM behaviour for very large sizes
and that their predictions are indistinguishable in the practical size range (Planas and Elices,
1990a; Elices and Planas, 1991 ; Elices et aL 1996). However, the experimental calibration
of these models varies significantly. As mentioned earlier, the parameters of the SEM are
defined for a specimen of infinite size and are, therefore, theoretically size- and geometry­
independent. However, the influence of the specimen size range used in their determination
has not been studied thoroughly. On the other hand, the parameters of the TPFM may
depend on the size and geometry of the specimen used in their determination (Elices and
Planas, 199 I ; Mihashi et al., 1996) necessitating a standard specimen for its experimental
calibration. This is also the case of the fictitious crack model, which ideally needs a direct
tension test for determining its parameters.

For practical purposes, the parameters of the SEM and TPFM can be considered as
equivalent. That is, using the parameters of the TPFM, namely the fracture toughness
(KU and critical crack-tip opening displacement (CTODe ) as K1c and ('ie, respectively, in
the SEM [see eqns (4) and (5)] the same values of failure loads in normal-size notched
beams are obtained. This equivalence has also been proposed by other researchers (e.g.,
Bazant et al., 1991; Oettu et al., 1995; Karihaloo, 1995), and is illustrated in Fig. 2, where
the predictions of the two models for three-point bend specimens (span/depth ratio =, 4) of
different depths and with a notch length ao = 10 mm are given for a cement mortar with
Kk = K1c = 0.955 MPa-m0 5

, (\ = CTODe == 0.00965 mm and E = 32.48 OPa. The pre­
dictions are similar, especially for smaller specimens.

One important limitation of modified LEFM models is their inability to adequately
predict the failure loads of unnotched specimens (or initially uncracked structures),
especially those of small size. Though the TPFM satisfactorily predicts the failure loads of
large uncracked structures, the SEM cannot be directly applied to these cases (Elices et al.,
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](96). The fundamental reason for this is that the LEFM functions used by the models are
not applicable to these cases since K] and its derivative vanish for a crack length of zero
size (Planas and Elices. ]990b).

COMPARISO"l WITH THE MULTIFR/\CTAL SCALING MODEl.

Considering that the effect of the disorder in the microstructure on structural behaviour
becomes progressively less significant as the size of the structure increases. Carpinteri ('{ al.
(1995) formulated a model called the multifractal scaling law (MFSL) for representing the
size effect on the failure loads. Furthermore. they assumed that the effect of the disorder
tends to reduce the nominal failure until it reaches a constant value equal to the tensile
strength at infinite size. By associating the degree of disorder to a multiple of the aggregate
size (. which is assumed to be a material parameter. the model is defined as:

G" =/,
I

1+ c

d
(7)

Contrary to the SEM and other nonlinear fracture mechanics models, the MFSL assumes
that LEFM is applicable at small sizes and crack lengths. Another important difference is
that eqn (7) is independent of the geometry of the specimen and the initial crack length.

DETAILS OF THE TESTS PERFORMED 1"1 THE PRESF."IT STLI)Y

Two concretes were used in the experimental study. The first one was a conventional
concrete. denoted as NSC. with a cement: sand: gravel: water proportion of
I : 2.05 : 2.05: 0.5. by weight. Spanish Type 1-45 A cement (equivalent to ASTM type I and
CEN Class 1 42.5 cement). siliceous sand (05 mm). and crushed limestone gravel (5-12
mm) "vere the materials used. The slump of the fresh concrete was 14 cm. 'The average 28­
day values of the conventional compression strength (/:.) and the Brazilian splitting-tensile
strength (I'll were 35.9 MPa (± 7.2'''/;,) and 3.8 MPa (± 14.8°;(,). respectively. Both tests
were performed on 15< 30 cm cylinders.

The second concrete "vas a high-strength silica fume concrete. denoted as HSC. The
cement: sand: gravel: water: rnicrosilica proportions were] : 1.9: ].9: 0.35 : 0.1. by weight.
The materials used were Spanish I 55-A cement (equivalent to ASTM type III and CEN
Class I 52.5 cement). siliceous sand (05 mm). crushed limestone gravel (5] 2 mm) and
densified condensed silica fume (ELKEM Grade nOD). A napthalene-based super­
plasticizer (GRACE Daracem 120) was incorporated at 17.8 I/m) of concrete (dry super­
plasticizer/cement 1.5'~I,). by weight). The slump of the fresh concrete \\as 25 cm. The
average 28-day values of the conventional compression strength UJ and the Brazilian
splitting-tensile strength (I;,). from 15 x 30 cm cylinders. were 81.71\1Pa (:± 1.5"/;,) and 5.3
MPa (± IO.lo,~»). respectively.

For the fracture tests. the beams were cast in laminated wooden moulds (",,'ith the
loading plane vertical). by placing the concrete in threc layers, each of which was compacted
by rodding. They had depths (d) of 80. 160 and 320 mm. with the same thickness (h) of 50
mm and lengths equal to 3. J 25 d. In all 56 beams were tested.

The beams were tested under three-point bending (i.e .. centre-point loading) wi ttl
spans (.1') equal to 2.5d. The specimens tested. along with their notch lengths (ao). are
specified in Table I. In some cases (denoted with *). the specimens were cut from the halves
of previously-tested larger specimens. The notches were cut in the bottom (nJOulded) t~lces

with a diamond disc saw. and had widths of 3 mm. All the tests were conducted in a I MN
Instron 8505 dynamic testing system under crack-mouth opening displacement (eMOD)
control. The constant CMOD rates used in each test are also given in Table I : diflerent
loading rates were used in order to get similar t~lilllre times. The CMOD was monitored
using a clip gauge of ±2 mill range and the load was monitored using a load cell of
± 100 kN range.
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Table I, Test data for the NSC and HSC specimens

Specimen Beam Notch length CMOD Peak load Peak load corrected Maximum nominal
notation depth Id) (a,,) rate /V' for self weight (P,,) stress {a,J

mm mm micronsis N MP"

(a) NSC
NSI 320 88 0,10 9369 9557 0594

9385 9573 0,595
9439 9629 0,599

NS2* 160 44 OJ)7 5650 5697 0,711
5000 5047 0.629
4779 4826 0,602

NS3* 80 22 0,0.1 2751 2763 0,692
.1157 3169 0792
2956 2967 0,741

NNI 320 12 0,05 16,950 17<138 U)71
OJ)4 17,930 18,118 1132

NN2 160 12 0,05 8280 8327 1041
7560 7607 0.951
8180 8227 1,028

NN.1 80 12 0,11.1 3990 4002 1.000
0,02 4280 4292 1,073

NDI 160 0 0,0.1 11,740 11,787 IA73
12,660 12,707 1,588

ND2* 160 .12 0,07 7530 7557 0,947
6050 6097 0,762
5970 6017 0,752

ND.1* 160 64 0,0,5 3480 3527 OA41
3590 3637 OA55
3100 3147 0.193

ND4* 160 96 0,03 1770 1817 0.227
1350 1397 0,175
1770 1817 0,227

(b) HSC
HSI 320 88 Cl.l () 9700 9888 0,618

9740 9928 0.621
9740 9928 0.621

HS2* 160 44 0.07 5542 5589 0.699
5365 5412 0.677
5533 5580 cum

HS3* 80 22 (U)3 ,1763 3775 0,944
3345 3357 0839
3496 3508 0,877

Hl'<1 320 12 0.05 22,060 22,248 1391
21,260 21,448 1341
21,\80 21.368 1336

HN2 160 12 0.05 10.330 10,337 1.297
IC1-598 10,645 1331
10,727 10,774 1.347

HN3 80 12 OJ)3 5644 5656 IA14
5216 5228 1.107
5159 5171 1293

HDI* 160 ° OJ)} 20AIO 20,457 2.557
17,720 17,767 2,221

HD2* 160 32 0.07 7147 7194 I 124
7227 7274 1137
6887 6934 1.083

H03 160 66 0,05 3700 3747 0.781
4070 4117 0,858
4290 4337 0,904

HD4* 160 96 0,03 1766 1813 0,567
1716 1763 0,551
1776 1823 0,570

* Specimens cut from larger beams.

[n order to compensate for the effect of the weight of the specimen on the measured
peak load, the corrected peak load (Pu in Table I) is obtained by adding half the self-weight
to the measured load (as in RILEM, 1990). The maximum nominal stress (aN) is taken as
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P,jhd. Note that in order to obtain a nominal maximum flexural stress, 0"1' has to be
multiplied by 1.5 sid (Bazant and Kazemi, 1990).

DETERMINATION OF THE PARAMETERS OF SEM AND MFSL

The data from the geometrically similar specimens are used to determine the fracture
parameters or to calibrate the SEM, for each concrete. Considering two-dimensional simi­
larity, the specimens NSI, NS2 and NS3 of NSC, and specimens HSI, HS2 and HS3 of
HSC have scaled dimensions, with a span/depth ratio (sid) of 2.5 and relative notch length
(C<o = ao/d) of 0.275 d. The corresponding values of g(c<o) and g'(C<o) are 11.23 and 59.71.
respectively.

Using eqn (3) the parameters B and do have been determined through nonlinear
regression analysis with the Marquardt Levenberg algorithm. The plot of the fit with the
test data is shown in Fig. 3. It can be seen that the trend is modeled satisfactorily, and that
the HSC data lie closer to the LEFM asymptote (and have higher [3 values) than the NSC
data, reflecting the higher brittleness of silica fume concretes compared with conventional
concretes. The values obtained from the regression analysis and the resulting fracture
parameters are given in Table 2. The modulus of elasticity for each concrete was obtained
from the initial slope of the load--CMOD curves of the largest notched beams. The trends
of the parameters are as expected, with the HSC exhibiting a higher value of B and a lower
value of do! than NSC, indicating higher strength and higher brittleness, respectively. The
higher brittleness is also reflected in the lower CI and ()c values of HSC.

The process of determining the fracture parameters with data from proportional
specimens can be considered as the calibration of the size effect model. These are material
parameters which can be used in the generalized model (eqn 6) to predict the failure loads
of other specimens and structures. The only additional requirement is the determination of
the LEFM function g(x) for the geometry whose failure load has to be predicted. Moreover,
the calibration can be performed on specimens cut from the undamaged parts of previously­
tested larger specimens or constructed struct ures, as in the present study. This eliminates
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Table 2. FnKture parameters from the size effect method

Ie ,1.., E B dll K" ('I (i, ii
Concrete MPa MPa GPa MPa mm MPa-mm' 2 mm N':m microns

NSC 3(,.4 3.4 34.5 OR06 363 50.7 66 74.5 3R.]
HSC 83.0 4.4 36.4 1137 116 41.2 22 46.6 17.0



The size effect method for analyzing the fracture of concrete

0.1

4129

- HSC. f,=0.479MPa;l
c
=192.9mm +

0.0

os

~ -0.1
~

t"•

..s-
~ -0.2

.9

-0.3

-0.4

- NSC, It 0.543 MPa; 1,= 69.2 nun •

1.5 2.0 2.5 3.0 3.5
log (d) mm

Fig. 4. Fitting of the multifractal scaling model to test data.

4.0

the need for several sets of moulds and reduces the quantity of material needed for the
tests.

The MSFL has also been fitted to the above-mentioned data (Fig. 4). The fits of the
test data are satisfactory and the fracture parameters obtained are: j; = 0.543 MPa and
Ie = 69 mm for NSC, and./; = 0.480 MPa and Ie = 193 mm for HSC. In order to compare
the values off, obtained from the MFSL to test data, they are converted to the flexural
strengths of 2.04 for NSC and 1.8 for HSC, by multiplying them by 1.5 sid. Note that these
values are much lower than the experimental data (see '/;, values in Table 2). These data
also imply that the theoretical flexural strength decreases with an increase in compressive
strength. Similarly, the" values, which are measures of the microstructural disorder and
consequently the material ductility, indicate an increase in disorder and a decrease in the
brittleness with an increase in compressive strength. These trends seem to be contrary to
those in the literature (cfGettu and Shah, 1994).

PREDICTION OF THE SIZE EFFECT IN NON-SIMILAR SPECIMENS

Other than the scaled specimens, two other series of the specimens were tested for each
concrete. One series had specimens of the same size (d = 160 mm) with notches of different
lengths, consisting of the specimens NOl, N02, N03, N04 and NS2 for NSC, and HOI,
H02, H03, H04 and HS2 for HSC (see Fig. 5 for typicalload--CMOO andload--deflection
curves). The other series had specimens ofdifferent sizes with the same notch length (an = 12
mm), consisting of the specimens NN 1, NN2 and NN3 for NSC. and HN I, HN2 and HN3
for HSC.

The predictions made with eqn (6) for the first series are plotted in Fig. 6, along with
the experimental data. Note that this series had relative notch lengths (!Xl) ranging from
zero (i.e., unnotched) to 0.6. It can be seen that the failure load predictions are good, in
both concretes, for longer notch lengths. The predictions also reflect the higher rate at
which the strength of the HSC specimen decreases with an increase in crack length due to
its higher brittleness. However, the model severely underestimates the strength of unnotched
specimens (an ..... 0), with a higher error for the more brittle high strength concrete. Also, it
appears that the deviation from the experimental trend occurs at a smaller notch length in
the less brittle normal-strength concrete. This indicates that the SEM is not directly appli­
cable for the case of short cracks and initially uncracked specimens, confirming the con­
clusion of Planas and Elices (1990b). This aspect is also reflected in Fig. 5, where it can be
seen that the brittleness number f1 is able to quantify the brittleness of the failure (indicated
by the steepness of the descending part of the curves) only for values of!Xn > 0.2. It appears
that these cases have to be simulated through more sophisticated procedures such as the
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analysis with the fictitious crack model as suggested by Elices et al. (1996) or through the
coupling of damage and fracture criteria as suggested by Mazars and Pijaudier-Cabot
(1994), and Bazant and Li (1995).

The predictions and test data corresponding to the second series of specimens are
shown in Fig. 7. The geometrically similar specimens have depths of 80. 160 and 320 mm
(i.e., scale of I: 4) with a constant notch length of 12 mm, which is small compared to the
depth and the aggregate size. It can be seen that the predictions are close to the test data.
However, the range of the data is insufficient to completely verify the trends exhibited by
the model predictions.

The multi fractal model could not be used to predict the loads in these specimens since
this model does not incorporate the notch length. On the other hand, fitting of the data
with the model yielded negative values of leo which seem unrealistic. The physical significance
of the MFSL parameters and their applicability have therefore to be studied further and
clarified.
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CONCLUSIONS

The size model effect of Bazant provides a framework for the characterization of the
fracture behaviour of concrete and for the determination of the parameters that quantify
the crack resistance and the material brittleness. Comparisons with the multi fractal model
indicate that though the fits of the data from geometrically similar specimens are satisfactory
for both the models, the SEM provides much more meaningful parameters and is capable
of predicting the strengths of concrete specimens and structures. Using the parameters
determined from simple notched beam tests, the SEM can predict the failure loads of other
structures. The predictions are practically exact when the initial crack length is not small
compared to the aggregate size and the specimen dimensions. For small notches and initial
cracks. the model underestimates the failure loads.
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